Mebiol Gel

Catalog No:
MBG-PMW20-1001
$343.00

Mebiol® Gel—a copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm-PEG)—undergoes temperature-reversible transition from a liquid-like state at 4°C to rigid hydrogel at 37°C.

The highly lipophilic hydrogel state provides niches for cell proliferation, cell communication, gas/mass exchange, and shear force protection—ideal for 3D cell culture, tissue engineering, and drug delivery.

Please click here to view more information about Mebiol Gel Products

Mebio Products: Quick Access
Catalog Number Size
MBG-PMW20-1001 1 x 10 ml
MBG-PMW20-1005 5 x 10 ml
MBG-PMW20-5005 5 x 50 ml
MBG-PMW20-5001 1 x 50 ml
MBG-PMW20-1020 20 x 10 ml
MBG-PMW20-1030 30 x 10 ml
MBG-PMW20-1040 40 x 10 ml
MBG-PMW20-1050 50 x 10 ml
MBG-PMW20-5020 20 x 50 ml

Note:

This product is packaged with RP Drying Agent packs to absorb moisture, oxygen and corrosive gases. It is therefore subject to European Commerce Area Import Regulation (EC) No. 1272/2008 - Classification, Labeling, and Packaging of Substances and Mixtures (CLP). Applies to EEA (i.e. EU27 countries, Iceland, Liechtenstein, Norway, UK).

For additional information, see the following:
          OSHA Europe
          RP Agent Manufactuer's Statement

Introduction to Mebiol® Gel

Hydrogels are a diverse class of polymeric materials characterized by their network-like structure and high water content. Hydrogels of many kinds have found a wide variety of applications in medicine and life science research weighted towards, but not at all limited to three-dimensional cell culture, tissue engineering, and drug delivery. Properties highly favorable to cell culture and tissue engineering applications prompted the commercialization of Mebiol® Gel, a copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm-PEG) for research purposes in the early 2000's.

Mebiol® Gel's defining feature, in contrast to other commercially available hydrogels, is its temperature reversible sol-gel transition. When cooled, Mebiol® Gel is a sol (handles like a liquid) but becomes a rigid hydrogel at higher temperatures. In practice, this means extremely easy cell handling. Cultures are seeded into cooled Mebiol® Gel and recovered conveniently by cooling the culture vessel and centrifugation. In the gel state, the highly lipophylic environment of the Mebiol® Gel presents an efficient niche for cell proliferation, cell communication, gas and mass exchange, and protection of cells and tissue from shear forces.

              Low Temperature (Sol)                        High Temperature (Gel)

Features

  • Easy handling
  • Non-toxic, biocompatible
  • 100% synthetic, pathogen free
  • High transparency for cell observation
  • Proven performance.

Preparation

Application

  • Stem cell and pluripotent stem cell culture, expansion, and differentiation
  • Spheroid culture
  • Cell implantation
  • Organ and Tissue Regeneration
  • Drug Delivery
  • Non-cell culture application

Application Examples

1) Culture of primary cancer cells in Mebiol Gel
Selective growth of only primary cancer cells from human cancerous tissue in Mebiol Gel (courtesy Dr. S. Kubota, Dept. of General Surgery, St. Marianna University School of Medicine). This technology enables the characterization of patient-derived primary cancer cells and therefore enabling the evaluation of primary cells for chemosensitivity, malignancy, metastasis activity and other parameters that might influence patient therapy.

Human colon cancerous tissue was cultured in Mebiol® Gel for 10 days. Only primary cancer cells proliferate from the tissue in Mebiol Gel.

Fibroblasts growth in Mebiol® Gel is suppresed whereas In collagen and many other 3D gel culture matrices, fibroblasts overgrow and prevent proliferation of primary cancer cells.

2) Stem Cell Culture
3D culture of undifferentiated mouse and Macaca ES cells cultured without LIF or feeder layer cells performed in collaboration with with Dr. K. Hishikawa, Dept. of Clinical Renal Regeneration, University of Tokyo. 

Left: 2D on Feeder Cells 
Right: 3D Culture in Mebiol Gel 
(Day 7)

The strong positive alkaline phosphatase staining of Macaca (primate) ES cells cultured in Mebiol® Gel suggests undifferentiation.

Left: 2D on Feeder Cells 
Right: 3D Culture in Mebiol Gel 
(without LF, day 5)

 
3) Selective separate culture of somatic stem cell (mouse embryo skin origin)
Isolation of Epithelial Stem Cells from Dermis by a Three-dimensional Culture System
Journal of Cellular Biochemistry, 98 (1), 174-184 (2006) PMID: 16408300
 
4) Cartilage tissue reproduction by in vitro 3D culture of cartilage cell
Chondrocytes Containing Growth Factors in a Novel Thermoreversible Gelation Polymer Scaffold 
Tissue Engineering, 12 (5), 1237-1245 (2006)
 
5) Bone induction by in vitro 3D culture of human mesenchymal cell stem cell (hMSC)
Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer
Biochem. Biophys. Res. Commun., 317, 1103-1107 (2004). PMID: 15094382
 
6) Production of hepatitis C viruses (HCV) by 3-D culture of human hepatocyte cell line
Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b
Virology, 351 (2), 381-392 (2006) PMID: 16678876
 
7) Passage control by local heating (on chip cell sorter system)
On-Chip Cell Sorting System Using Laser-Induced Heating of a Thermoreversible Gelation Polymer to Control Flow, Y. Shirasaki, J. Tanaka, H. Makazu, K. Tashiro, S. Shoji, S. Tsukita, T. Funatsu,
Anal. Chem., 78, 695-701 (2006) PMID: 16448041

more

Technical Notes

References and Literature 
Frequently Asked Questions

Dynamic Viscoelastic Property of Mebiol® Gel

 
Temperature dependence of the dynamic moduli of the aqueous solution of Mebiol® Gel at a concentration of 10 wt% in distilled water. Storage modulus (G', solid lines) and loss modulus (G'', broken lines) were measured on heating (closed symbols) and cooling (open symbols) at the oscillatory frequency of 1 Hz.



Documents & Links for Mebiol Gel
Flyer Mebiol® Gel Flyer
Datasheet Mebiol Gel Datasheet
Vendor Page Mebiol Gel at Cosmo Bio LTD

Documents & Links for Mebiol Gel
Flyer Mebiol® Gel Flyer
Datasheet Mebiol Gel Datasheet
Vendor Page Mebiol Gel

Citations for Mebiol Gel – 44 Found
Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P; Reynolds, Brent A; Lei, Yuguo. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels. Scientific Reports. 2016;6( 27549983):31915.  PubMed
Tahir, Suhail; Fukushima, Yuji; Sakamoto, Keiko; Sato, Kyosuke; Fujita, Harumi; Inoue, Joe; Uede, Toshimitsu; Hamazaki, Yoko; Hattori, Masakazu; Minato, Nagahiro. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. Journal Of Immunology (Baltimore, Md. : 1950). 2015;194(12):5725-35.  PubMed
Lei, Yuguo; Schaffer, David V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2013;110(52):E5039-48.  PubMed
Hiramatsu, Ryuji; Harikae, Kyoko; Tsunekawa, Naoki; Kurohmaru, Masamichi; Matsuo, Isao; Kanai, Yoshiakira. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development (Cambridge, England). 2010;137(2):303-12.  PubMed
Arai, Takao; Benny, Ofra; Joki, Tatsuhiro; Menon, Lata G; Machluf, Marcelle; Abe, Toshiaki; Carroll, Rona S; Black, Peter M. Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes. Anticancer Research. 2010;30(4):1057-64.  PubMed
Yamamoto, Masamichi; Beppu, Hideyuki; Takaoka, Katsuyoshi; Meno, Chikara; Li, En; Miyazono, Kohei; Hamada, Hiroshi. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. The Journal Of Cell Biology. 2009;184(2):323-34.  PubMed
Kimura-Yoshida, Chiharu; Nakano, Hiroshi; Okamura, Daiji; Nakao, Kazuki; Yonemura, Shigenobu; Belo, Jose A; Aizawa, Shinichi; Matsui, Yasuhisa; Matsuo, Isao. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Developmental Cell. 2005;9(5):639-50.  PubMed
Brown, Jacquelyn A; Faley, Shannon L; Judge, Monika; Ward, Patricia; Ihrie, Rebecca A; Carson, Robert; Armstrong, Laura; Sahin, Mustafa; Wikswo, John P; Ess, Kevin C; Neely, M Diana. Rescue of Impaired Blood-Brain Barrier in Tuberous Sclerosis Complex Patient Derived Neurovascular Unit. Biorxiv : The Preprint Server For Biology. 2023; 38168450( 38168450)  PubMed
Dzurov, Matej; Pospíšilová, Šárka; Krafčíková, Michaela; Trantírek, Lukáš; Vojtová, Lucy; Ryneš, Jan. A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins. Journal Of Biomolecular Nmr. 2023;77(5-6):203-215.  PubMed
Miron, Alina; Ní Dhubhghaill, Sorcha; Kocaba, Viridiana; Jager, Martine J; Melles, Gerrit R J; Oellerich, Silke. Early and late-onset cell migration from peripheral corneal endothelium. Plos One. 18(5):e0285609.  PubMed
Dzurov, Matej; Pospíšilová, Šárka; Krafčíková, Michaela; Trantírek, Lukáš; Vojtová, Lucy; Ryneš, Jan. A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins. Journal Of Biomolecular Nmr. 2023;77(5-6):203-215.  PubMed
Buzzaccaro, Stefano; Ruzzi, Vincenzo; Faleo, Tommaso; Piazza, Roberto. Microrheology of a thermosensitive gelling polymer for cell culture. The Journal Of Chemical Physics. 2022;157(17):174901.  PubMed
Parfenov, Vladislav A; Khesuani, Yusef D; Petrov, Stanislav V; Karalkin, Pavel A; Koudan, Elizaveta V; Nezhurina, Elizaveta K; Pereira, Frederico DAS; Krokhmal, Alisa A; Gryadunova, Anna A; Bulanova, Elena A; Vakhrushev, Igor V; Babichenko, Igor I; Kasyanov, Vladimir; Petrov, Oleg F; Vasiliev, Mikhail M; Brakke, Kenn; Belousov, Sergei I; Grigoriev, Timofei E; Osidak, Egor O; Rossiyskaya, Ekaterina I; Buravkova, Ludmila B; Kononenko, Oleg D; Demirci, Utkan; Mironov, Vladimir A. Magnetic levitational bioassembly of 3D tissue construct in space. Science Advances. 2020;6(29):eaba4174.  PubMed
Schröder, Agnes; Schöniger, Ricarda; Oeldemann, Juliane; Spanier, Gerrit; Proff, Peter; Jantsch, Jonathan; Kirschneck, Christian; Ullrich, Niklas. An Evaluation of Different 3D Cultivation Models on Expression Profiles of Human Periodontal Ligament Fibroblasts with Compressive Strain. International Journal Of Molecular Sciences. 2022;23(4)  PubMed
Goggi, Julian L; Qiu, Lifeng; Liao, Mei Chih; Khanapur, Shivashankar; Jiang, Lingfan; Boominathan, Ramasamy; Hartimath, Siddesh V; Cheng, Peter; Yong, Fui Fong; Soh, Vanessa; Deng, Xiaozhou; Lin, Youshan Melissa; Haslop, Anna; Tan, Peng Wen; Zeng, Xiaoxia; Lee, Jolene W L; Zhang, Zhiwei; Sadasivam, Pragalath; Tan, Eng King; Luthra, Sajinder K; Shingleton, William D; Oh, Steve K W; Zeng, Li; Robins, Edward G. Dopamine transporter neuroimaging accurately assesses the maturation of dopamine neurons in a preclinical model of Parkinson's disease. Stem Cell Research & Therapy. 2020;11(1):347.  PubMed
Li, Yi-Han; Chen, Tsung-Ming; Huang, Bu-Miin; Yang, Shang-Hsun; Wu, Chia-Ching; Lin, Yung-Ming; Chuang, Jih-Ing; Tsai, Shaw-Jenq; Sun, H Sunny. FGF9 is a downstream target of SRY and sufficient to determine male sex fate in ex vivo XX gonad culture. Biology Of Reproduction. 2020;103(6):1300-1313.  PubMed
Chakrabarty, Sanjiban; Quiros-Solano, William F; Kuijten, Maayke M P; Haspels, Ben; Mallya, Sandeep; Lo, Calvin Shun Yu; Othman, Amr; Silvestri, Cinzia; van de Stolpe, Anja; Gaio, Nikolas; Odijk, Hanny; van de Ven, Marieke; de Ridder, Corrina M A; van Weerden, Wytske M; Jonkers, Jos; Dekker, Ronald; Taneja, Nitika; Kanaar, Roland; van Gent, Dik C. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture. Cancer Research. 2022;82(3):510-520.  PubMed
Lin, Zuan-Tao; Gu, Jianhua; Wang, Huie; Wu, Albon; Sun, Jingying; Chen, Shuo; Li, Yaxi; Kong, Yifei; Wu, Mei X; Wu, Tianfu. Thermosensitive and Conductive Hybrid Polymer for Real-Time Monitoring of Spheroid Growth and Drug Responses. Acs Sensors. 2021;6(6):2147-2157.  PubMed
Lei, Yuguo; Schaffer, David V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2013;110(52):E5039-48.  PubMed
Lei, Yuguo; Schaffer, David V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2013;110(52):E5039-48.  PubMed
Yook, Yeon Joo; Yoo, Kyung Hyun; Song, Seon Ah; Seo, Min Ji; Ko, Je Yeong; Kim, Bo Hye; Lee, Eun-Ji; Chang, Eunsun; Woo, Yu Mi; Park, Jong Hoon. Mxi1 influences cyst formation in three-dimensional cell culture. Bmb Reports. 2012;45(3):189-93.  PubMed
Suzuki, Yoko; Ohno, Satoshi; Okuyama, Ryuji; Aruga, Atsushi; Yamamoto, Masakazu; Miura, Shigeki; Yoshioka, Hiroshi; Mori, Yuichi; Suzuki, Katsuhiko. Determination of chronic inflammatory states in cancer patients using assay of reactive oxygen species production by neutrophils. Anticancer Research. 2012;32(2):565-70.  PubMed
Suzuki, Katsuhiko; Ohno, Satoshi; Suzuki, Yoko; Ohno, Yumiko; Okuyama, Ryuji; Aruga, Atsushi; Yamamoto, Masakazu; Ishihara, Ken-O; Nozaki, Tsutomu; Miura, Shigeki; Yoshioka, Hiroshi; Mori, Yuichi. Effect of green tea extract on reactive oxygen species produced by neutrophils from cancer patients. Anticancer Research. 2012;32(6):2369-75.  PubMed
Suzuki, Katsuhiko; Ohno, Satoshi; Suzuki, Yoko; Ohno, Yumiko; Okuyama, Ryuji; Aruga, Atsushi; Yamamoto, Masakazu; Ishihara, Ken-O; Nozaki, Tsutomu; Miura, Shigeki; Yoshioka, Hiroshi; Mori, Yuichi. Effect of green tea extract on reactive oxygen species produced by neutrophils from cancer patients. Anticancer Research. 2012;32(6):2369-75.  PubMed
Hiramatsu, Ryuji; Harikae, Kyoko; Tsunekawa, Naoki; Kurohmaru, Masamichi; Matsuo, Isao; Kanai, Yoshiakira. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development (Cambridge, England). 2010;137(2):303-12.  PubMed
Sitalakshmi, G; Sudha, B; Madhavan, H N; Vinay, S; Krishnakumar, S; Mori, Yuichi; Yoshioka, Hiroshi; Abraham, Samuel. Ex vivo cultivation of corneal limbal epithelial cells in a thermoreversible polymer (Mebiol Gel) and their transplantation in rabbits: an animal model. Tissue Engineering. Part A. 2009;15(2):407-15.  PubMed
Vemuganti, Geeta K; Fatima, Anees; Madhira, Soundarya Lakshmi; Basti, Surendra; Sangwan, Virender S. Limbal stem cells: application in ocular biomedicine. International Review Of Cell And Molecular Biology. 275( 19491055):133-81.  PubMed
Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV. Biochemical And Biophysical Research Communications. 2009;379(2):330-4.  PubMed
Yamamoto, Masamichi; Beppu, Hideyuki; Takaoka, Katsuyoshi; Meno, Chikara; Li, En; Miyazono, Kohei; Hamada, Hiroshi. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. The Journal Of Cell Biology. 2009;184(2):323-34.  PubMed
Aly, Hussein H; Watashi, Koichi; Hijikata, Makoto; Kaneko, Hiroyasu; Takada, Yasutugu; Egawa, Hiroto; Uemoto, Shinji; Shimotohno, Kunitada. Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. Journal Of Hepatology. 2007;46(1):26-36.  PubMed
Sudha, B; Madhavan, H N; Sitalakshmi, G; Malathi, J; Krishnakumar, S; Mori, Y; Yoshioka, H; Abraham, S. Cultivation of human corneal limbal stem cells in Mebiol gel--A thermo-reversible gelation polymer. The Indian Journal Of Medical Research. 2006;124(6):655-64.  PubMed
Yasuda, Ayuko; Kojima, Koji; Tinsley, Kevin W; Yoshioka, Hiroshi; Mori, Yuichi; Vacanti, Charles A. In vitro culture of chondrocytes in a novel thermoreversible gelation polymer scaffold containing growth factors. Tissue Engineering. 2006;12(5):1237-45.  PubMed
Medina, Reinhold J; Kataoka, Ken; Takaishi, Mikiro; Miyazaki, Masahiro; Huh, Nam-ho. Isolation of epithelial stem cells from dermis by a three-dimensional culture system. Journal Of Cellular Biochemistry. 2006;98(1):174-84.  PubMed
Nagaya, Masaki; Kubota, Sunao; Suzuki, Noboru; Akashi, Katsuya; Mitaka, Toshihiro. Thermoreversible gelation polymer induces the emergence of hepatic stem cells in the partially injured rat liver. Hepatology (Baltimore, Md.). 2006;43(5):1053-62.  PubMed
Murakami, Kyoko; Ishii, Koji; Ishihara, Yousuke; Yoshizaki, Sayaka; Tanaka, Keiko; Gotoh, Yasufumi; Aizaki, Hideki; Kohara, Michinori; Yoshioka, Hiroshi; Mori, Yuichi; Manabe, Noboru; Shoji, Ikuo; Sata, Tetsutaro; Bartenschlager, Ralf; Matsuura, Yoshiharu; Miyamura, Tatsuo; Suzuki, Tetsuro. Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b. Virology. 2006;351(2):381-92.  PubMed
Kimura-Yoshida, Chiharu; Nakano, Hiroshi; Okamura, Daiji; Nakao, Kazuki; Yonemura, Shigenobu; Belo, Jose A; Aizawa, Shinichi; Matsui, Yasuhisa; Matsuo, Isao. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Developmental Cell. 2005;9(5):639-50.  PubMed
Hishikawa, Keiichi; Miura, Shigeki; Marumo, Takeshi; Yoshioka, Hiroshi; Mori, Yuichi; Takato, Tsuyoshi; Fujita, Toshiro. Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Biochemical And Biophysical Research Communications. 2004;317(4):1103-7.  PubMed
Nagaya, M; Kubota, S; Suzuki, N; Tadokoro, M; Akashi, K. Evaluation of thermoreversible gelation polymer for regeneration of focal liver injury. European Surgical Research. Europaische Chirurgische Forschung. Recherches Chirurgicales Europeennes. 2004;36(2):95-103.  PubMed
Tsukikawa, Satoshi; Matsuoka, Hiromitsu; Kurahashi, Yuko; Konno, Yasushi; Satoh, Koh; Satoh, Ryotaroh; Isogai, Akiko; Kimura, Kanako; Watanabe, Yasuharu; Nakano, Suehiro; Hayashi, Junya; Kubota, Sunao. A new method to prepare multicellular spheroids in cancer cell lines using a thermo-reversible gelation polymer. Artificial Organs. 2003;27(7):598-604.  PubMed
Shimizu, S; Yamazaki, M; Kubota, S; Ozasa, T; Moriya, H; Kobayashi, K; Mikami, M; Mori, Y; Yamaguchi, S. In vitro studies on a new method for islet microencapsulation using a thermoreversible gelation polymer, N-isopropylacrylamide-based copolymer. Artificial Organs. 1996;20(11):1232-7.  PubMed
Yoshioka, Hiroshi; Mori, Yuichi; Shimizu, Mitsuhiro. Separation and recovery of DNA fragments by electrophoresis through a thermoreversible hydrogel composed of poly(ethylene oxide) and poly(propylene oxide). Analytical Biochemistry. 2003;323(2):218-23.  PubMed
Shirasaki, Yoshitaka; Tanaka, Jyunichi; Makazu, Hiroshi; Tashiro, Koichiro; Shoji, Shuichi; Tsukita, Shoichiro; Funatsu, Takashi. On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Analytical Chemistry. 2006;78(3):695-701.  PubMed
Shirasaki, Yoshitaka; Tanaka, Jyunichi; Makazu, Hiroshi; Tashiro, Koichiro; Shoji, Shuichi; Tsukita, Shoichiro; Funatsu, Takashi. On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Analytical Chemistry. 2006;78(3):695-701.  PubMed
Arai, Takao; Joki, Tatsuhiro; Akiyama, Masaharu; Agawa, Miyuki; Mori, Yuichi; Yoshioka, Hiroshi; Abe, Toshiaki. Novel drug delivery system using thermoreversible gelation polymer for malignant glioma. Journal Of Neuro-Oncology. 2006;77(1):9-15.  PubMed