Printed January 26, 2021 Version 4.0 For Research Use Only. Not for use in diagnostic procedures. # **HA-tagged Protein Purification Gel** (MoAb. clone 5D8) Code No. 3321 Purification to Maintain Protein Activity from eukaryote cell lysate and culture supernatant # **Product Description** The ability to isolate and study a purified protein lies at the heart of modern biochemistry. Researchers in many fields require highly purified, active proteins for studies involving signaling pathways, enzymology, receptor binding, DNA binding, post-transcriptional modifications, and much more. Thus, choosing a method of purification is an important aspect in maintaining protein structure and function. Recombinant tagged protein purification methods and kits are now widely recognized. The HA epitope tag, YPYDVPDYA, is derived from Human influenza hemaglutinin (HA) 98-106 aa. This HA-tag is also commonly used in such as mammalian cell expression vectors. MBL's HA-tagged Protein Purification Gel is designed for the isolation of HA-tagged protein from cell culture supernatants and cell lysate under neutral pH condition. Severe conditions such as acidic or alkaline elution denature protein structure. However, a neutral pH elution can preserve protein activity and native conformation. Therefore, MBL has developed the Anti-HA-tag Gel to purify HA-tagged proteins quickly and efficiently at neutral pH to maintain the activity and conformation of purified proteins. The elution of HA-tagged proteins from the Gel is achieved by the addition of the HA-tag peptide (YPYDVPDYA). As the HA-tag peptide competes with HA-tagged proteins on the Gel, the purified proteins do not lose the protein activity. ## **Components** Quantity Code No. 3321 #### Anti-HA-tag Gel $1 \text{ mL} \times 1 \text{ vials}$ 50% slurry: 1 mL Gel in 2 mL total volume in PBS with 0.1% ProClin 150 as preservative. Elution Peptide (YPYDVPDYA) is NOT included. It is available as Code No. 3320-205 (2 mg x 5 vials). # **Product Capacity** The purification capacity of the Anti-HA-tag Gel varies depending upon the HA-tagged protein. For example, 1 mL of Anti-HA-tag Gel bound 1.7 mg of a HA-tagged protein (32 kDa) and eluted 1.4 mg of purified protein in our hands. #### Storage Store for up to 1 year from date of receipt at 2-8°C. Do not freeze. The descriptions of the following protocols are examples. Each user should determine the appropriate condition. # **Material Preparation** Prepare the following reagents before affinity purification. Lysis buffer : Suitable Lysis buffer varies with a kind of the HA-tagged protein (see Additional Information). 10-50 mM Tris-HCl (pH 7.5) 100-300 mM NaCl 1-5 mM EDTA 1% NP-40 or Triton X-100 if necessary add Protease Inhibitor Cocktail (e.g. SIGMA; code P8340, PIERCE; code 78415) Washing buffer : PBS Elution buffer : 2 mg/mL HA-tag peptide in PBS. Regeneration buffer : 0.17 M Glycine-HCl, pH 2.3 Column storage buffer: PBS/Preservative (e.g. 0.1% ProClin 150 and 0.09% NaN₃) ## **Procedure Summary** ## **Protocols** Notes: 1. The Gel is optimized under the native conditions only, and it is not recommended under denaturing conditions and also for purification of aggregated, unstable, and insoluble protein (e.g. inclusion bodies). Proteins solubilized with such as 6 M Guanidine-HCl or 8 M Urea cannot be purified using this Gel (see **Additional Information**). - 2. Cellular debris and particulate matter must be removed prior to purification. The protein extract should be centrifuged (10,000-20,000 x g for 15 minutes) and filtered with a 0.45 μ m filter to remove any remaining cells and particulates. - 3. Highly viscous samples containing chromosomal DNA or RNA should be sonicated or treated with nuclease to reduce viscosity. #### A. Column preparation - 1. Place the empty chromatography column (e.g., PIERCE; code 29920) on rack or stand. - 2. Rinse the column with Washing buffer. - 3. Resuspend the anti-HA-tag Gel by tapping and inverting the vial several times immediately before dispensing. Don't vortex. - Transfer the desired volume to the column. Allow the column to drain. Do not allow the column to dry out. - 5. Wash the column with 10 bed volumes of Washing buffer. #### B. Column binding 1. Apply the lysate on the top of the column under gravity flow. Note: The binding efficiency to anti-HA-tag Gel depends on the conditions such as a kind of the HA-tagged protein, sample flow rate, and temperature. If the coupling efficiency has been low, put a sample through the column several times, or incubate the lysate with the Gel in batch. - 2. Collect the flow-through into clean collection tubes. - 3. Wash the column with PBS until the OD280 is <0.01. #### C. Elution of the HA-tagged protein - 1. Prepare 5 bed volumes of Elution buffer. - 2. Remove the bottom cap, and pour off the excess liquid. - 3. To exchange the buffer in the column, add 1 bed volume of Elution buffer, and drain the 1 bed volume of the buffer. - 4. Cap the bottom, and add 1 bed volumes of Elution buffer so that the Gel does not dry. - 5. Allow the column to stand at 4°C for 5 minutes. (As the HA-tag peptide competes with HA-tagged protein on the Gel by this incubation, HA-tagged protein is eluted from the Gel.) - 6. Remove the bottom cap, and collect the eluate into clean collection tubes (Fraction 1). - 7. Add 1 bed volumes of Elution buffer, collect the eluate into clean collection tubes (Fraction 2). - 8. Repeat the elution and collection step (Step 6 and 7) another 3 times. (Fraction 1-5 contains HA-tagged Protein.) Note: Elution efficiency depends on each HA-tagged protein. If the efficiency has been low, please examine numbers of elution, and volume and peptide concentration of Elution buffer. #### D. Regeneration and storage - 1. Wash the column with 10 bed volumes of Regeneration buffer. - 2. Immediately wash the column with 10 bed volumes of Column storage buffer. - 3. Store at 2-8°C in 2 bed volumes of Column storage buffer. Note: Poured columns containing the anti-HA-tag Gel may be used at least 10 times, depending on the usage conditions. # **Example of Purification Results** Purification of N-terminus HA-tagged β-galactosidase SDS-PAGE (Coomassie Brilliant Blue Staining) Human embryonic kidney cells (293T) were transfected with pcDNA-HA-tagged β -galactosidase and cultured for 60 hours. Cells were then lysed in the Lysis buffer (10 mL/100-mm dish x 5) and purified according to the preceding protocol. Column bed volume was 0.25 mL. Elution was carried out with 1.5 mL of 2 mg/mL HA-tag peptide. Each fraction was 0.25 mL. ## **Additional Information** Several reagents were examined whether or not they were suitable for use with the HA-tagged Protein Purification Gel. For example, RIPA buffer could be used for preparation of cell lysate. The results are listed below. | Chaotropic ag | gents | | | |---------------|---------------------------------------|-------|-----| | | Urea | 1 M | Yes | | | Guanidine-HCl | 1 M | No | | Reducing age | ents | | | | | DTT | 10 mM | Yes | | | 2-Mercaptoethanol | 10 mM | Yes | | Surfactants | | | | | Nonionic | Tween-20 | 5% | Yes | | | Triton X-100 | 5% | Yes | | | NP-40 | 1% | Yes | | | Digitonin | 1% | Yes | | | n-Octyl-β-D-gulcoside | 1% | Yes | | Zwitterionic | CHAPS | 1% | Yes | | | CHAPSO | 1% | Yes | | Anionic | SDS | 0.05% | No | | | Sodium Deoxycholate | 0.5% | Yes | | Others | | | | | | NaCl | 1 M | Yes | | | Glycerol | 10% | Yes | | | EDTA | 10 mM | Yes | | | · · · · · · · · · · · · · · · · · · · | | | The "Yes" indicates the reagents can be used in the Lysis buffer for this Gel up to the indicated concentration. The "No" indicates the reagents cannot be used in the Lysis buffer for this Gel at the indicated concentration. # **Related Products:** Please visit our website at https://ruo.mbl.co.jp. ## はじめに さまざまな研究分野で、活性のあるタンパク質、構造を保ったタンパク質を精製することは大変重要です。活性や構造を保ったままでタンパク質を精製するためには、酸、アルカリなどの過酷な条件下ではなく、中性条件下で精製できることが理想です。 HA-tag はヒトインフルエンザウィルス A のヘマグルチニン由来の9アミノ酸配列 (YPYDVPDYA)で、哺乳動物細胞の発現ベクターによく使用されています。 このゲルには HA-tag を特異的に認識する抗 HA-tag 抗体が結合しています。HA-tag タンパク質を含む溶液をゲルカラムにアプライします。インキュベーション後の洗浄で HA-tag タンパク質以外を洗い流します。その後、ゲルに過剰量の HA-tag ペプチド (配列: YPYDVPDYA) を含む溶液を加えることで、HA-tag タンパク質と HA-tag ペプチドの競合を生じさせ、ゲルから HA-tag タンパク質を解離させて回 # 構成 収します。 Quantity Code No. 3321 #### Anti-HA-tag Gel 1 mL×1 本 50% スラリー: 保存剤として 0.1%の ProClin 150 を含有します。 PBSに1mLのビーズが入り2mLとなっています。 Elution Peptide (YPYDVPDYA) は同梱されておりません。 Code No. 3320-205 (2 mg x 5 本) で別売しておりますので、ご参照ください。 ## 保存 製品有効期限は、出荷後1年間です。2-8℃で保存してください。凍結は避けてください。 #### 精製のキャパシティー 精製のキャパシティーは HA-tag 融合タンパク質の種類によって異なります。 32 kDaの HA-tag タンパク質 1.7 mg を精製した例では 1 mLの Anti-HA-tag Gel を用いて、1.4 mgの HA-tag タンパク質を回収することができました。 <u>データシート中のプロトコールは参考例です。研究によって最適な条件は異なりますので、事前に条件検討</u>を行うことを推奨します。 ## 試薬の準備 1. 細胞溶解バッファー 目的タンパクによって最適な細胞溶解バッファーの種類は異なります。 ## 試薬の使用可否表をご覧ください。 #### 自家製の例 10-50 mM Tris-HCl (pH 7.5) 100-300 mM NaCl 1-5 mM EDTA 1% NP-40 又は Triton X-100 必要に応じて Protease Inhibitor Cocktail を加えてください。 (例: SIGMA; code P8340, PIERCE; code 78415) 3. 洗浄バッファー : PBS 3. 溶出バッファー : 2 mg/mL HA-tag ペプチド 4. 再生バッファー : 0.17 M Glycine-HCl, pH 2.3 5. 保存バッファー : PBS/Preservative (例: 0.1% ProClin 150 又は 0.09% NaN₃) # 精製の概略図 # プロトコール このゲルはアグリゲートしやすいタンパク質や、大腸菌に発現させた不溶性のタンパク質の精製には適しておりません。また、 $6\,M$ Guanidine-HCI や $8\,M$ Urea で可溶化したサンプルは、このゲルでは精製できません(試薬の使用可否をご参照ください)。サンプル中に微粒子が含まれている場合には精製前に取り除く必要があります。遠心処理($10,000-20,000\,x\,g$ 、 $15\,分間$)した後、上清を $0.45\,\mu m\,\sigma$ フィルターに通して微粒子を除去してください。ゲノム $\,DNA$ や $\,RNA$ 等を含むサンプルで、粘性が高い場合には超音波処理または適当な試薬 $\,(x)$ スクレアーゼなど $\,(x)$ で処理をして粘性を下げてください。 #### A. カラム準備 - 1. 空のカラム (PIERCE: code 29920 等) を垂直に立てます。 - 2. カラムを適当量の洗浄バッファーで洗浄します。 - 3. Anti-HA-tag Gel の容器を指ではじき転倒混和することで均一なスラリーにしてください。ボルテックスは使わないでください。 - 4. 必要量の Anti-HA-tag Gel をカラムに入れ保存液を排出します。 - カラムボリュームの10倍量の洗浄バッファーを流します。 *ゲルベッドを乾燥させないでください ## B. HA-tag タンパク質のゲルへの吸着 自然落下流速によりサンプルをカラムにローディングします。 (注意: HA-tag タンパク質の種類、流速、温度などの条件によって Anti-HA-tag Gel への結合効率が変わることがあります。結合効率が低い場合には、①カラムにサンプルを複数回通す、②サンプルと Anti-HA-tag Gel を 15 mL チューブなどに入れて、ローテーターにセットし、穏やかに転倒混和することにより改善することがあります。) - 2. 素通り画分をチューブに回収します。 - 3. カラムを洗浄バッファーで洗浄し、OD280 が 0.01 以下になるまで洗浄してください。 #### C. HA-tag タンパク質の溶出 - 1. ベッドボリュームの5倍量の溶出バッファーを用意します。 - 2. 下のキャップをはずし、洗浄バッファーを排出します。 - 3. Anti-HA-tag Gel 内のバッファーを溶出バッファーに置換するため、1 ベッドボリュームの溶出バッファーを加え、1 ベッドボリュームのバッファーを排出します。 - 4. 下のキャップを閉めます。ゲルが乾燥しないように 1 ベッドボリュームの溶出バッファーを加えます。 - 5. カラムを 4°Cで5分インキュベートします。(このインキュベーションにより、HA-tag タンパク質と HA-tag ペプチドの競合が生じ、 ゲルから HA-tag タンパク質が解離します。) - 6. 下のキャップをはずして 1 ベッドボリューム溶出し、溶出液を適当なチューブに回収します (Fraction 1)。 - 7. 下のキャップを閉めて、1ベッドボリュームの溶出バッファーを加えます。 - 8. 下のキャップをはずして 1 ベッドボリューム溶出し、溶出液を適当なチューブに回収します (Fraction 2)。 - 9. 7.8.の操作を繰り返し、Fraction 5 まで回収します。(Fraction 1-5 には HA-tag タンパク質が含まれます。) (注意: HA-tag タンパク質によって溶出効率が変わることがあります。溶出効率が低い場合には、①溶出回数、②溶出バッファーの量、③溶出バッファーのペプチド濃度、のご検討を頂く事で改善することがあります。) #### D. 再生及び保存 - 1. カラムをベッドボリュームの10倍量の再生バッファーで洗浄します。 - 2. 直ちにベッドボリュームの 10 倍量以上の保存バッファーで洗浄し、排出液の pH が中性に戻っていることを確認します。 - 3. 保存バッファーを加えて密閉し2-8℃で保存します。 *使用条件により異なりますが10回程度は再使用できます。 ## 精製の例 N末端 HA-tagged β-galactosidase の精製(SDS-PAGE クマシー染色) ヒト胎児腎由来細胞株(293T)に pcDNA-HA-tagged β -galactosidase プラスミド DNA をトランスフェクションし、60 時間培養しました。細胞を細胞溶解バッファー(10 mL/100-mm dish x 5 枚)に溶解させ、カラム(Gel vol. 0.25 mL)にアプライし、0.1 mg/mL ペプチドで溶出しました。フラクションは各 0.25 mL です。 # 試薬の使用可否 下記の試薬を細胞溶解バッファーの成分に加えた場合、本ゲルで使えるか調べました。 *RIPA バッファーは使用可能です。 | α | 4 | • | | 4 | |----------|-----|-----|-----|------| | Chao | tro | nıc | 200 | ntc | | CHUU | | | usi | IILO | | Urea | 1 M | Yes | |---------------|-----|-----| | Guanidine-HCl | 1 M | No | # Reducing agents | DTT | 10 mM | Yes | |-------------------|-------|-----| | 2-Mercaptoethanol | 10 mM | Yes | #### **Surfactants** | Nonionic | Tween-20 | 5% | Yes | |--------------|-----------------------|-------|-----| | | Triton X-100 | 5% | Yes | | | NP-40 | 1% | Yes | | | Digitonin | 1% | Yes | | | n-Octyl-β-D-gulcoside | 1% | Yes | | Zwitterionic | CHAPS | 1% | Yes | | | CHAPSO | 1% | Yes | | Anionic | SDS | 0.05% | No | | | Sodium Deoxycholate | 0.5% | Yes | ## Others | NaCl | 1 M | Yes | |----------|-------|-----| | Glycerol | 10% | Yes | | EDTA | 10 mM | Yes | Yes: 表に示した濃度まで細胞溶解バッファーに加えて使用できます。 No: 表に示した濃度で細胞溶解バッファーに加えると使用できません。 関連製品: 当社のウェブサイト https://ruo.mbl.co.jp をご覧ください。 # 発売元 株式会社 医学生物学研究所 URL <u>https://ruo.mbl.co.jp</u> e-mail <u>support@mbl.co.jp</u>